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Abstract: This paper deals with robust control of linear parameter varying (LPV) system (AC 

induction motor) by a LPV controller. State space equations of an AC induction motor in α-β stator 

fixed frame are nonlinear with respect to rotor speed. Nonlinear equations are rewritten to 

parameter form describing dependency on rotor speed which is assumed to be known by 

measurement or by estimation. LPV controller is designed using H∞ theory to govern stator 

currents of an AC induction motor. Simulation results presented in this paper show that current 

controller provides good tracking and disturbance rejection over whole range of rotor speeds. 
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1. INTRODUCTION 

Commonly used current control techniques for AC induction motor are treating nonlinear equations 

in two different ways, both based on the linearization of motor equations.  

First approach uses Taylor Series expansion of a function around some point of interest. This 

method will result in equations which are locally linear. But more the trajectory deviates from the 

point of interest more the linearized model will differ from actual motor model. Controller derived 

from this linear representation will show different results in real application depending on state of 

the AC induction motor such as motor speed or parameter deviation. Robust methods can be used 

to find globally stabilizing controller for all speed and parameter variations but at the cost of 

controller performance.  

Second approach uses exact linearization to find substitute which will make the motor equations 

linear and controllable. Unlike the first method exact linearization should provide minimal 

difference between linearized and actual model independently of current state. Unfortunately this 

method has one considerable disadvantage which is necessity to know the values of state space 

vector but the physical construction of ordinary induction motor does not allow to measure some of 

the state space variables (fluxes for example) and these need to be estimated from remaining 

variables.  

Besides the control methods described above there are some nonlinear control techniques for 

controller synthesis but mathematical skills needed for stabilization of nonlinear plant with 

nonlinear controller are considerable. LPV method described in this article will provide linear state 

space equations which will require only rotor speed to be known. 

2. AC INDUCTION MOTOR AS LINEAR PARAMETER VARYING SYSTEM 

LPV system can be described by state space equations of the following form: 
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There are at least two types of systems that can be described as an LPV system: 

 Linear time invariant plants with time varying parametric uncertainty 

 Nonlinear plats that can be linearized along the trajectories of some known parameters 

Let's consider following state space equations of an AC induction motor in α-β stator fixed frame: 
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With state vector   [             ]
   and following parameters: 

   
     

    
               

  
  
               

 

  
     

 

  
              

   
  
            

   
   

       
    

     

     
              

 

   
              

  
  
  

  
  
   

 
   
 

       
                         

   
 

    
 

(3) 

If we take out first state variable  , we will get nonlinear equations affinely dependent on only one 

parameter.  

State space equations of an AC induction motor affinely dependent on  : 
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(5) 

Our goal is to design a LPV controller which will adjust to the plant dynamics based on 

information on   - LPV controller will provide gain-scheduling with respect to varying parameter 
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However finding stabilizing controller for all admissible values of   would be difficult because 

there is infinite number of stability conditions to verify. It is possible to reduce infinite number of 

solutions using vertex property [3] and design the controller at the vertices of given plant. 

Controllers at the vertices are designed offline and their impact on control action is based on the 

varying parameter. 



3.    LOOP SHAPING 

In order to stabilize the closed loop for all variations of   it is necessary to satisfy following 

conditions at the vertices of the given plant: 
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Where       ,        represents the maximum robust stability margin[4]. It is possible to 

specify desired closed loop performance by using weighting functions. Position of weighting 

function in closed loop system will affect the shape of each related system function defined in 

equation (7). Each system function represents one property of conventional closed loop system, for 

example (    )   is sensitivity function and it relates to disturbance rejection and its 

counterpart the complementary sensitivity function   (    )   relates to tracking performance. 

Remaining two system functions are related to plant input error rejection and control energy 

reduction. Only two of the total four system functions were considered for    loop shaping of 

LPV current controller: 
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Where   (    )   is the sensitivityfunction and     (    )   is the complementary 

sensitivity function. 

 

Fig.1. Augmented closed loop 

Weight    was selected as 
        

     
so that sensitivity function will have character of a high pass 

filter. It is desired to keep the values of sensitivity function frequency response less than 1 (0dB, 

1/  ) to highest frequency possible in order to guarantee rejection of disturbances. For reference 

tracking the complementary sensitivity function is shaped with static function with a value of 0.8 

this will keep frequency response above 1 (1/  ). These two requirements cannot be both satisfied 

simultaneously; therefore feedback controller design is trade-off over frequency of conflicting 

objectives. H∞ suboptimal controller is computed by solving linear matrix inequality for the closed 

loop system [3], minimizing closed loop quadratic H∞ performance from input w to output z 

(Fig.1). LPV controller can be computed using Matlab function hinfgs from Robust Control 

Toolbox, this function requires augmented closed loop system (it can be constructed using Matlab 

function sconnect) with all weighting functions included as shown in Fig.1. This function returns 

stabilizing controller KLPV, achieved   and closed loop systems R, S containing controller KLPV. 

LPV current controller performance for unit step response with evenly spaced values of   is shown 

in Fig. 3. 
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Fig. 2. Unit step response of a plant for different 

values of   

 

Fig. 3. Unit step response of the current closed 

loop for different values of   

Overall performance of the current feedback loop was tested with a simple static controller which 

provides tracking of desired speed and flux of the linearized plant. 

 

Fig.4. Speed controller structure 

 

Fig.5. Speed controller step response 

Description Value 

Stator inductance Ls 0.47H 

Rotor inductance Lr 0.47H 

Mutual inductance Lsr 0.44H 

Leakage factor   0.12 

Stator resistance Rs 0.8Ω 

Rotor resistance Rr 3.6Ω 

Moment of inertia Dm 0.06kg.m
2 

Viscous damping constant Rm 0.04N.m.s 

Number of pole pairs np 2 
Table 1.Motor nominal parameters 
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4. CONCLUSION 

This article presented a LPV control approach for nonlinear plants. The state space variable that 

caused nonlinearity was taken out as a varying parameter and two controllers were designed for 

vertices of this known (measured) parameter. Due to a vertex property [3] of the LPV current plant 

it is possible for a stable system to reduce infinite number of LPVs to solve to a finite number; in 

this case controller is designed for the two vertex plants. Each controller is computed by a convex 

solution of Bounded Real Lemma presented in [3]. Current controller was simulated for several 

values of varying parameter  , magnitude of these changes is presented on motor behavior shown 

in Fig. 2. As shown in Fig. 3 LPV controller adjusts itself to varying values of  . Step response 

values are similar for all variations (individual lines are overlapping in Fig. 3).From this simulation 

we can assume that impact on the closed loop performance is minimal. Achieved H∞ quadratic 

performance of 0.79 guarantees that closed loop with LPV controller is robustly stable for all 

admissible values of  . Final simulation of speed controller was performed with static controller 

which was designed for fast speed reference tracking and minimal overlap. Simple flux observer 

[1] was implemented to estimate α-β component of motor flux. This observer doesn’t provide good 

flux tracking and estimation error can be observed in the case of change in motor parameters. This 

flux observer can be potentially replaced in order to improve the close loop stability and 

performance in the case of parameter change. 
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